home *** CD-ROM | disk | FTP | other *** search
- #ifndef _I386_PGTABLE_H
- #define _I386_PGTABLE_H
-
- #include <linux/config.h>
-
- /*
- * The Linux memory management assumes a three-level page table setup. On
- * the i386, we use that, but "fold" the mid level into the top-level page
- * table, so that we physically have the same two-level page table as the
- * i386 mmu expects.
- *
- * This file contains the functions and defines necessary to modify and use
- * the i386 page table tree.
- */
- #ifndef __ASSEMBLY__
- #include <asm/processor.h>
- #include <asm/fixmap.h>
- #include <linux/tasks.h>
-
- /* Caches aren't brain-dead on the intel. */
- #define flush_cache_all() do { } while (0)
- #define flush_cache_mm(mm) do { } while (0)
- #define flush_cache_range(mm, start, end) do { } while (0)
- #define flush_cache_page(vma, vmaddr) do { } while (0)
- #define flush_page_to_ram(page) do { } while (0)
- #define flush_icache_range(start, end) do { } while (0)
-
- /*
- * TLB flushing:
- *
- * - flush_tlb() flushes the current mm struct TLBs
- * - flush_tlb_all() flushes all processes TLBs
- * - flush_tlb_mm(mm) flushes the specified mm context TLB's
- * - flush_tlb_page(vma, vmaddr) flushes one page
- * - flush_tlb_range(mm, start, end) flushes a range of pages
- *
- * ..but the i386 has somewhat limited tlb flushing capabilities,
- * and page-granular flushes are available only on i486 and up.
- */
-
- #define __flush_tlb() \
- do { unsigned long tmpreg; __asm__ __volatile__("movl %%cr3,%0\n\tmovl %0,%%cr3":"=r" (tmpreg) : :"memory"); } while (0)
-
- #ifndef CONFIG_X86_INVLPG
- #define __flush_tlb_one(addr) flush_tlb()
- #else
- #define __flush_tlb_one(addr) \
- __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr))
- #endif
-
- #ifndef __SMP__
-
- #define flush_tlb() __flush_tlb()
- #define flush_tlb_all() __flush_tlb()
- #define local_flush_tlb() __flush_tlb()
-
- static inline void flush_tlb_mm(struct mm_struct *mm)
- {
- if (mm == current->mm)
- __flush_tlb();
- }
-
- static inline void flush_tlb_page(struct vm_area_struct *vma,
- unsigned long addr)
- {
- if (vma->vm_mm == current->mm)
- __flush_tlb_one(addr);
- }
-
- static inline void flush_tlb_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- if (mm == current->mm)
- __flush_tlb();
- }
-
- #else
-
- /*
- * We aren't very clever about this yet - SMP could certainly
- * avoid some global flushes..
- */
-
- #include <asm/smp.h>
-
- #define local_flush_tlb() \
- __flush_tlb()
-
-
- #define CLEVER_SMP_INVALIDATE
- #ifdef CLEVER_SMP_INVALIDATE
-
- /*
- * Smarter SMP flushing macros.
- * c/o Linus Torvalds.
- *
- * These mean you can really definitely utterly forget about
- * writing to user space from interrupts. (Its not allowed anyway).
- */
-
- static inline void flush_tlb_current_task(void)
- {
- /* just one copy of this mm? */
- if (atomic_read(¤t->mm->count) == 1)
- local_flush_tlb(); /* and that's us, so.. */
- else
- smp_flush_tlb();
- }
-
- #define flush_tlb() flush_tlb_current_task()
-
- #define flush_tlb_all() smp_flush_tlb()
-
- static inline void flush_tlb_mm(struct mm_struct * mm)
- {
- if (mm == current->mm && atomic_read(&mm->count) == 1)
- local_flush_tlb();
- else
- smp_flush_tlb();
- }
-
- static inline void flush_tlb_page(struct vm_area_struct * vma,
- unsigned long va)
- {
- if (vma->vm_mm == current->mm && atomic_read(¤t->mm->count) == 1)
- __flush_tlb_one(va);
- else
- smp_flush_tlb();
- }
-
- static inline void flush_tlb_range(struct mm_struct * mm,
- unsigned long start, unsigned long end)
- {
- flush_tlb_mm(mm);
- }
-
-
- #else
-
- #define flush_tlb() \
- smp_flush_tlb()
-
- #define flush_tlb_all() flush_tlb()
-
- static inline void flush_tlb_mm(struct mm_struct *mm)
- {
- flush_tlb();
- }
-
- static inline void flush_tlb_page(struct vm_area_struct *vma,
- unsigned long addr)
- {
- flush_tlb();
- }
-
- static inline void flush_tlb_range(struct mm_struct *mm,
- unsigned long start, unsigned long end)
- {
- flush_tlb();
- }
- #endif
- #endif
- #endif /* !__ASSEMBLY__ */
-
-
- /* Certain architectures need to do special things when PTEs
- * within a page table are directly modified. Thus, the following
- * hook is made available.
- */
- #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
-
- /* PMD_SHIFT determines the size of the area a second-level page table can map */
- #define PMD_SHIFT 22
- #define PMD_SIZE (1UL << PMD_SHIFT)
- #define PMD_MASK (~(PMD_SIZE-1))
-
- /* PGDIR_SHIFT determines what a third-level page table entry can map */
- #define PGDIR_SHIFT 22
- #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
- #define PGDIR_MASK (~(PGDIR_SIZE-1))
-
- /*
- * entries per page directory level: the i386 is two-level, so
- * we don't really have any PMD directory physically.
- */
- #define PTRS_PER_PTE 1024
- #define PTRS_PER_PMD 1
- #define PTRS_PER_PGD 1024
- #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
-
- /*
- * pgd entries used up by user/kernel:
- */
-
- #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
- #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
- #define __USER_PGD_PTRS ((__PAGE_OFFSET >> PGDIR_SHIFT) & 0x3ff)
- #define __KERNEL_PGD_PTRS (PTRS_PER_PGD-__USER_PGD_PTRS)
-
- #ifndef __ASSEMBLY__
- /* Just any arbitrary offset to the start of the vmalloc VM area: the
- * current 8MB value just means that there will be a 8MB "hole" after the
- * physical memory until the kernel virtual memory starts. That means that
- * any out-of-bounds memory accesses will hopefully be caught.
- * The vmalloc() routines leaves a hole of 4kB between each vmalloced
- * area for the same reason. ;)
- */
- #define VMALLOC_OFFSET (8*1024*1024)
- #define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
- #define VMALLOC_VMADDR(x) ((unsigned long)(x))
- #define VMALLOC_END (FIXADDR_START)
-
- /*
- * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
- * of the Pentium details, but assuming intel did the straightforward
- * thing, this bit set in the page directory entry just means that
- * the page directory entry points directly to a 4MB-aligned block of
- * memory.
- */
- #define _PAGE_PRESENT 0x001
- #define _PAGE_RW 0x002
- #define _PAGE_USER 0x004
- #define _PAGE_PWT 0x008
- #define _PAGE_PCD 0x010
- #define _PAGE_ACCESSED 0x020
- #define _PAGE_DIRTY 0x040
- #define _PAGE_4M 0x080 /* 4 MB page, Pentium+, if present.. */
- #define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
-
- #define _PAGE_PROTNONE 0x080 /* If not present */
-
- #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
- #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
- #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
-
- #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
- #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
- #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
- #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
- #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
- #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
-
- /*
- * The i386 can't do page protection for execute, and considers that the same are read.
- * Also, write permissions imply read permissions. This is the closest we can get..
- */
- #define __P000 PAGE_NONE
- #define __P001 PAGE_READONLY
- #define __P010 PAGE_COPY
- #define __P011 PAGE_COPY
- #define __P100 PAGE_READONLY
- #define __P101 PAGE_READONLY
- #define __P110 PAGE_COPY
- #define __P111 PAGE_COPY
-
- #define __S000 PAGE_NONE
- #define __S001 PAGE_READONLY
- #define __S010 PAGE_SHARED
- #define __S011 PAGE_SHARED
- #define __S100 PAGE_READONLY
- #define __S101 PAGE_READONLY
- #define __S110 PAGE_SHARED
- #define __S111 PAGE_SHARED
-
- /*
- * Define this if things work differently on an i386 and an i486:
- * it will (on an i486) warn about kernel memory accesses that are
- * done without a 'verify_area(VERIFY_WRITE,..)'
- */
- #undef TEST_VERIFY_AREA
-
- /* page table for 0-4MB for everybody */
- extern unsigned long pg0[1024];
- /* zero page used for uninitialized stuff */
- extern unsigned long empty_zero_page[1024];
-
- /*
- * BAD_PAGETABLE is used when we need a bogus page-table, while
- * BAD_PAGE is used for a bogus page.
- *
- * ZERO_PAGE is a global shared page that is always zero: used
- * for zero-mapped memory areas etc..
- */
- extern pte_t __bad_page(void);
- extern pte_t * __bad_pagetable(void);
-
- #define BAD_PAGETABLE __bad_pagetable()
- #define BAD_PAGE __bad_page()
- #define ZERO_PAGE ((unsigned long) empty_zero_page)
-
- /* number of bits that fit into a memory pointer */
- #define BITS_PER_PTR (8*sizeof(unsigned long))
-
- /* to align the pointer to a pointer address */
- #define PTR_MASK (~(sizeof(void*)-1))
-
- /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
- /* 64-bit machines, beware! SRB. */
- #define SIZEOF_PTR_LOG2 2
-
- /* to find an entry in a page-table */
- #define PAGE_PTR(address) \
- ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
-
- /* to set the page-dir */
- #define SET_PAGE_DIR(tsk,pgdir) \
- do { \
- unsigned long __pgdir = __pa(pgdir); \
- (tsk)->tss.cr3 = __pgdir; \
- if ((tsk) == current) \
- __asm__ __volatile__("movl %0,%%cr3": :"r" (__pgdir)); \
- } while (0)
-
- #define pte_none(x) (!pte_val(x))
- #define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
- #define pte_clear(xp) do { pte_val(*(xp)) = 0; } while (0)
-
- #define pmd_none(x) (!pmd_val(x))
- #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
- #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
- #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
-
- /*
- * The "pgd_xxx()" functions here are trivial for a folded two-level
- * setup: the pgd is never bad, and a pmd always exists (as it's folded
- * into the pgd entry)
- */
- extern inline int pgd_none(pgd_t pgd) { return 0; }
- extern inline int pgd_bad(pgd_t pgd) { return 0; }
- extern inline int pgd_present(pgd_t pgd) { return 1; }
- extern inline void pgd_clear(pgd_t * pgdp) { }
-
- /*
- * The following only work if pte_present() is true.
- * Undefined behaviour if not..
- */
- extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
- extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
- extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
- extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
- extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
-
- extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
- extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
- extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
- extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
- extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_RW; return pte; }
- extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
- extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
- extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
- extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
- extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
-
- /*
- * Conversion functions: convert a page and protection to a page entry,
- * and a page entry and page directory to the page they refer to.
- */
- #define mk_pte(page, pgprot) \
- ({ pte_t __pte; pte_val(__pte) = __pa(page) + pgprot_val(pgprot); __pte; })
-
- /* This takes a physical page address that is used by the remapping functions */
- #define mk_pte_phys(physpage, pgprot) \
- ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
-
- extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
- { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
-
- #define pte_page(pte) \
- ((unsigned long) __va(pte_val(pte) & PAGE_MASK))
-
- #define pmd_page(pmd) \
- ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
-
- /* to find an entry in a page-table-directory */
- #define pgd_offset(mm, address) \
- ((mm)->pgd + ((address) >> PGDIR_SHIFT))
-
- /* to find an entry in a kernel page-table-directory */
- #define pgd_offset_k(address) pgd_offset(&init_mm, address)
-
- /* Find an entry in the second-level page table.. */
- extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
- {
- return (pmd_t *) dir;
- }
-
- /* Find an entry in the third-level page table.. */
- #define pte_offset(pmd, address) \
- ((pte_t *) (pmd_page(*pmd) + ((address>>10) & ((PTRS_PER_PTE-1)<<2))))
-
- /*
- * Allocate and free page tables. The xxx_kernel() versions are
- * used to allocate a kernel page table - this turns on ASN bits
- * if any.
- */
-
- #define pgd_quicklist (current_cpu_data.pgd_quick)
- #define pmd_quicklist ((unsigned long *)0)
- #define pte_quicklist (current_cpu_data.pte_quick)
- #define pgtable_cache_size (current_cpu_data.pgtable_cache_sz)
-
- extern __inline__ pgd_t *get_pgd_slow(void)
- {
- pgd_t *ret = (pgd_t *)__get_free_page(GFP_KERNEL), *init;
-
- if (ret) {
- init = pgd_offset(&init_mm, 0);
- memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
- memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
- (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
- }
- return ret;
- }
-
- extern __inline__ pgd_t *get_pgd_fast(void)
- {
- unsigned long *ret;
-
- if((ret = pgd_quicklist) != NULL) {
- pgd_quicklist = (unsigned long *)(*ret);
- ret[0] = ret[1];
- pgtable_cache_size--;
- } else
- ret = (unsigned long *)get_pgd_slow();
- return (pgd_t *)ret;
- }
-
- extern __inline__ void free_pgd_fast(pgd_t *pgd)
- {
- *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
- pgd_quicklist = (unsigned long *) pgd;
- pgtable_cache_size++;
- }
-
- extern __inline__ void free_pgd_slow(pgd_t *pgd)
- {
- free_page((unsigned long)pgd);
- }
-
- extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);
- extern pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long address_preadjusted);
-
- extern __inline__ pte_t *get_pte_fast(void)
- {
- unsigned long *ret;
-
- if((ret = (unsigned long *)pte_quicklist) != NULL) {
- pte_quicklist = (unsigned long *)(*ret);
- ret[0] = ret[1];
- pgtable_cache_size--;
- }
- return (pte_t *)ret;
- }
-
- extern __inline__ void free_pte_fast(pte_t *pte)
- {
- *(unsigned long *)pte = (unsigned long) pte_quicklist;
- pte_quicklist = (unsigned long *) pte;
- pgtable_cache_size++;
- }
-
- extern __inline__ void free_pte_slow(pte_t *pte)
- {
- free_page((unsigned long)pte);
- }
-
- /* We don't use pmd cache, so these are dummy routines */
- extern __inline__ pmd_t *get_pmd_fast(void)
- {
- return (pmd_t *)0;
- }
-
- extern __inline__ void free_pmd_fast(pmd_t *pmd)
- {
- }
-
- extern __inline__ void free_pmd_slow(pmd_t *pmd)
- {
- }
-
- extern void __bad_pte(pmd_t *pmd);
- extern void __bad_pte_kernel(pmd_t *pmd);
-
- #define pte_free_kernel(pte) free_pte_fast(pte)
- #define pte_free(pte) free_pte_fast(pte)
- #define pgd_free(pgd) free_pgd_fast(pgd)
- #define pgd_alloc() get_pgd_fast()
-
- extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
- {
- address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
- if (pmd_none(*pmd)) {
- pte_t * page = (pte_t *) get_pte_fast();
-
- if (!page)
- return get_pte_kernel_slow(pmd, address);
- pmd_val(*pmd) = _KERNPG_TABLE + __pa(page);
- return page + address;
- }
- if (pmd_bad(*pmd)) {
- __bad_pte_kernel(pmd);
- return NULL;
- }
- return (pte_t *) pmd_page(*pmd) + address;
- }
-
- extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
- {
- address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);
-
- if (pmd_none(*pmd))
- goto getnew;
- if (pmd_bad(*pmd))
- goto fix;
- return (pte_t *) (pmd_page(*pmd) + address);
- getnew:
- {
- unsigned long page = (unsigned long) get_pte_fast();
-
- if (!page)
- return get_pte_slow(pmd, address);
- pmd_val(*pmd) = _PAGE_TABLE + __pa(page);
- return (pte_t *) (page + address);
- }
- fix:
- __bad_pte(pmd);
- return NULL;
- }
-
- /*
- * allocating and freeing a pmd is trivial: the 1-entry pmd is
- * inside the pgd, so has no extra memory associated with it.
- */
- extern inline void pmd_free(pmd_t * pmd)
- {
- }
-
- extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
- {
- return (pmd_t *) pgd;
- }
-
- #define pmd_free_kernel pmd_free
- #define pmd_alloc_kernel pmd_alloc
-
- extern int do_check_pgt_cache(int, int);
-
- extern inline void set_pgdir(unsigned long address, pgd_t entry)
- {
- struct task_struct * p;
- pgd_t *pgd;
- #ifdef __SMP__
- int i;
- #endif
-
- read_lock(&tasklist_lock);
- for_each_task(p) {
- if (!p->mm)
- continue;
- *pgd_offset(p->mm,address) = entry;
- }
- read_unlock(&tasklist_lock);
- #ifndef __SMP__
- for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
- pgd[address >> PGDIR_SHIFT] = entry;
- #else
- /* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
- modify pgd caches of other CPUs as well. -jj */
- for (i = 0; i < NR_CPUS; i++)
- for (pgd = (pgd_t *)cpu_data[i].pgd_quick; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
- pgd[address >> PGDIR_SHIFT] = entry;
- #endif
- }
-
- extern pgd_t swapper_pg_dir[1024];
-
- /*
- * The i386 doesn't have any external MMU info: the kernel page
- * tables contain all the necessary information.
- */
- extern inline void update_mmu_cache(struct vm_area_struct * vma,
- unsigned long address, pte_t pte)
- {
- }
-
- #define SWP_TYPE(entry) (((entry) >> 1) & 0x3f)
- #define SWP_OFFSET(entry) ((entry) >> 8)
- #define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))
-
- #define module_map vmalloc
- #define module_unmap vfree
-
- #endif /* !__ASSEMBLY__ */
-
- /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
- #define PageSkip(page) (0)
- #define kern_addr_valid(addr) (1)
-
- #endif /* _I386_PAGE_H */
-